Understanding and Benchmarking the Impact of **GDPR** on **Database Systems**

Supreeth Shastri

Vinay Banakar

Melissa Wasserman

Hewlett Packard Enterprise

Arun Kumar

Vijay Chidambaram

UC San Diego VmWare

Privacy and protection of personal data is a fundamental right of natural persons

Privacy and protection of personal data is a fundamental right of natural persons

99 Legal Articles

Regulate the collection, processing, protection, transfer and deletion of personal data

Privacy and protection of personal data is a fundamental right of natural persons

99 Legal Articles

Regulate the collection, processing, protection, transfer and deletion of personal data

Grants Rights to People

Grants all European people a right to protection and privacy of their personal data

Privacy and protection of personal data is a fundamental right of natural persons

99 Legal Articles

Regulate the collection, processing, protection, transfer and deletion of personal data

Assigns Responsibilities to Companies

Those who collect and process personal data are solely responsible for its privacy and protection

Grants Rights to People

Grants all European people a right to protection and privacy of their personal data

Privacy and protection of personal data is a fundamental right of natural persons

99 Legal Articles

Regulate the collection, processing, protection, transfer and deletion of personal data

Assigns Responsibilities to Companies

Those who collect and process personal data are solely responsible for its privacy and protection

Grants Rights to People

Grants all European people a right to protection and privacy of their personal data

Max penalty of 4% of global revenue or €20 million, whichever is greater

€50M

French Data Protection Authority, Jan 2019

Marriott. **HOTELS & RESORTS**

\$**123M**

UK Data Protection Agency, Jun 2019

UK Data Protection Agency, Jun 2019

€50M

French Data Protection Authority, Jan 2019

Marriott. **HOTELS & RESORTS**

\$**123M**

UK Data Protection Agency, Jun 2019

UK Data Protection Agency, Jun 2019

Public Complaints

any information relating to an identified or identifiable natural person

GDPR §4(1)

)

4

any information relating to an identified or identifiable natural person

GDPR §4(1)

)

4

any information relating to an identified or identifiable natural person

GDPR §4(1)

)

4

any information relating to an identified or identifiable natural person

Prof. Albus Dumbledore Has a phoenix as pet Drinks coffee at 8am

GDPR §4(1)

Published a paper at VLDB 2020

any information relating to an identified or identifiable natural person

Prof. Albus Dumbledore Has a phoenix as pet Drinks coffee at 8am

I have eight rights!

Right to know, access, rectify, erase, object, port, restrict processing, and withdraw from automated processing

GDPR §4(1)

Published a paper at VLDB 2020

any information relating to an identified or identifiable natural person

Prof. Albus Dumbledore Has a phoenix as pet Drinks coffee at 8am

I have eight rights!

Right to know, access, rectify, erase, object, port, restrict processing, and withdraw from automated processing

GDPR §4(1)

Published a paper at VLDB 2020

I have responsibilities

To obtain consent, track data usage, keep it secure, notify breaches etc.

any information relating to an identified or identifiable natural person

I have eight rights!

Right to know, access, rectify, erase, object, port, restrict processing, and withdraw from automated processing

GDPR §4(1)

How to build a GDPR-compliant database system for storing personal-data?

Analyze

Translate GDPR articles into system-level capabilities and characteristics

Build

Implement GDPR requirements in Redis and PostgreSQL

Measure

Benchmark compliant systems against GDPR workloads

5

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

GDPR-compliant datastore should:

Associate a time-to-live attribute with all data Have support for **timely deletion** of data

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

GDPR-compliant datastore should:

Associate a time-to-live attribute with all data Have support for **timely deletion** of data

Keep Record of Data Processing Activity

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

GDPR-compliant datastore should:

Associate a time-to-live attribute with all data Have support for **timely deletion** of data

Keep Record of Data Processing Activity

§ 30: RECORDS OF PROCESSING ACTIVITIES

(1) Each controller [...] shall maintain a record of processing activities under its responsibility.

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

GDPR-compliant datastore should:

Associate a time-to-live attribute with all data Have support for **timely deletion** of data

Keep Record of Data Processing Activity

§ 30: RECORDS OF PROCESSING ACTIVITIES

(1) Each controller [...] shall maintain a record of processing activities under its responsibility.

§ 33: NOTIFICATION OF A DATA BREACH

(1) the controller shall without undue delay and not later than 72 hours after having become aware of it, notify [...] (3) The notification shall at least describe the nature of the personal breach,"

§ 5(1)(E): STORAGE LIMITATION

"[...] kept for no longer than is necessary for the purposes for which the personal data are processed [...]"

§17: RIGHT TO BE FORGOTTEN

(1) The data subject shall have the right to obtain from the controller the erasure of personal data without undue delay [...]

GDPR-compliant datastore should:

Associate a time-to-live attribute with all data Have support for **timely deletion** of data

Keep Record of Data Processing Activity

§ 30: RECORDS OF PROCESSING ACTIVITIES

(I) Each controller [...] shall maintain a record of processing activities under its responsibility.

§ 33: NOTIFICATION OF A DATA BREACH

(1) the controller shall without undue delay and not later than 72 hours after having become aware of it, notify [...] (3) The notification shall at least describe the nature of the personal breach."

GDPR-compliant datastore should:

Associate an audit trail with all data Implement support for **monitoring/logging** of all data accesses

We analyzed all the 99 articles of GDPR, both individually and collectively...

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

1	Purpose
2	TTL
3	Audit trail
4	Objections
5	Origin of data
6	Externally shared?
7	Use in automated decision-making?

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

1	Purpose
2	TTL
3	Audit trail
4	Objections
5	Origin of data
6	Externally shared?
7	Use in automated decision-making?

GDPR Capabilities

Implement five features in the

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

1	Purpose
2	TTL
3	Audit trail
4	Objections
5	Origin of data
6	Externally shared?
7	Use in automated decision-making?

GDPR Capabilities

Implement five features in the

Encryption

Monitoring

Access control

Timely deletion

Metadata-based querying

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

GDPR Capabilities

Implement five features in the

Encryption

Monitoring

Access control

Timely deletion

Metadata-based querying

We analyzed all the 99 articles of GDPR, both individually and collectively...

GDPR Metadata

Associate seven behavioral attributes with personal data

Implement five features in the

GDPR-Compliant Storage Systems

GDPR-Compliant Storage Systems

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

redis PostgreSQL

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

redis PostgreSQL

Encryption

TTL/Timely deletion

Monitoring/Logging

Metadata Indexing

Access control

GDPR queries

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

redis	PostgreSC
3rd party lib	3rd party li
Code change	Scripting
Code change	Configure
Scripting	Configure
Scripting	Configure
Code change	Scripting
	redis 3rd party lib Code change Code change Scripting Code change

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

redis	PostgreSC
3rd party lib	3rd party li
Code change	Scripting
Code change	Configure
Scripting	Configure
Scripting	Configure
Code change	Scripting
	redis 3rd party lib Code change Code change Scripting Code change

Goal: Introduce GDPR-compliance into two representative storage systems and measure its impact

	redis	PostgreSQL
Encryption	3rd party lib	3rd party lib
TTL/Timely deletion	Code change	Scripting
Monitoring/Logging	Code change	Configure
Metadata Indexing	Scripting	Configure
Access control	Scripting	Configure
GDPR queries	Code change	Scripting

Performance overhead in Yahoo! Cloud Serving Benchmark (YCSB)

We build a new open-source benchmark called GDPRbench

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

We build a new open-source benchmark called GDPRbench

GDPR Queries

Control- and data-path operations performed on GDPR datastores

Benchmark Metrics

We build a new open-source benchmark called GDPRbench

GDPR Queries

Control- and data-path operations performed on GDPR datastores

Benchmark Metrics

Correctness

% responses that match the expected results

Completion Time

Time to complete all the workloads

Space Overhead

Ratio of total DB size to size of personal data

GDPR workloads run faster and scale better on SQL than NoSQL databases

Compliance may result in high performance overheads Production system should be carefully analyzed before enabling/claiming compliance

Compliance may result in high performance overheads

Production system should be carefully analyzed before enabling/claiming compliance

Compliance is easier in RDBMS than in NoSQL Redis needed more involved changes and had much higher overhead

Compliance may result in high performance overheads

Production system should be carefully analyzed before enabling/claiming compliance

Compliance is easier in RDBMS than in NoSQL Redis needed more involved changes and had much higher overhead

Compliance is a spectrum

Examine tradeoffs b/w strictness vs. efficiency Need mechanisms for efficient auditing/timely deletion/indexing

We want to hear from you!

We want to hear from you!

Find out more at https://www.GDPRbench.org/

• In Law, nothing is certain but the expense - *Samuel Butler*

• In Law, nothing is certain but the expense - Samuel Butler

Prof. Melissa Wasserman Law faculty, UT Austin

• In Law, nothing is certain but the expense - Samuel Butler

Response Time

Real-time *Complete GDPR tasks* synchronously

Eventual

Complete GDPR tasks asynchronously

Prof. Melissa Wasserman Law faculty, UT Austin

• In Law, nothing is certain but the expense - Samuel Butler

Response Time

Real-time Complete GDPR tasks synchronously

Per data item

Support right for every piece of data

Granularity of Rights

Eventual

Complete GDPR tasks asynchronously

Prof. Melissa Wasserman Law faculty, UT Austin

Per service/person

Support rights at the level of service

Our Interpretation of GDPR • In Law, nothing is certain but the expense - Samuel Butler

Prof. Melissa Wasserman Law faculty, UT Austin

Eventual

Complete GDPR tasks asynchronously

Per service/person

Support rights at the level of service

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

of time, it would take at least 110 hours to guarantee no expired keys in our cache.

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

Redis has built-in support for TTLs but... it internally erases expired keys using a lazy randomized algorithm

Code change: we changed the expiry algorithm to be deterministic

